COVER SHEET FOR ALL CURRICULUM PROPOSALS

$\begin{array}{c}\text { Check all } \\ \text { Campuses } \\ \text { making } \\ \text { this } \\ \text { proposal. }\end{array}$	ALL Proposals	New Programs/Courses		
	PC Signature	$\begin{array}{c}\text { CEO Signature } \\ \text { (CEO signature needed for all new } \\ \text { programs and any new courses that } \\ \text { have new facility/resource costs } \\ \text { associated with the course) }\end{array}$	$\begin{array}{c}\text { New Program } \\ \text { Approval } \\ \text { Supplement B }\end{array}$	$\begin{array}{c}\text { New Program } \\ \text { ("Budget" included } \\ \text { for each campus) }\end{array}$
("Cost Effectiveness and				
Resources" included for				
each campus)				

Type of Proposal.

	NEW Program (degree)
	NEW Certificate
	NEW Course
	MODIFICATION of an Aligned Program (degree)
	MODIFICATION of an Aligned Certificate
X	MODIFICATION of an Aligned Course
	DISCONTINUATION of a Program (degree)
	DISCONTINUATION of a Certificate
	DISCONTINUATION of a Course
	OTHER (please describe):

CT STATE
 Modification of an Existing Aligned Course

This template should be used by the faculty discipline and program workgroups to modify an official record of a course for inclusion in the CT State Community College catalog. All original information as approved should be included, with revisions highlighted within the document and summarized in the "Summary of Changes." Please use the form below, or the original approved template with revisions highlights can be copied here, with a summary of changes and effective date included and all changes highlighted within the document.

Directions: Please provide the date, name of originator, title, and campus below.
Date: 5/3/24
Name of Originator: Sue Lounsbury
Title of Originator: Professor of Mathematics
Primary Campus of Originator: Tunxis

COURSE INFORMATION (Aligned)

COURSE TITLE:	Foundations of Advanced Mathematics	COURSE TITLE:	
COURSE CODE:	MATH 2623 (formerly MAT*287)	COURSE CODE:	
SUMMARY OF CHANGES:		SU-4-letter subject code and number)	
Thabject code and number)		This course is typically only offered during the Spring semester. We propose a change to the course description so that students and advisors understand that this course is not necessarily offered every semester and can plan their pathway for completing their degree accordingly.	

CREDIT HOURS:	4	CREDIT HOURS:	
CONTACT HOURS:	4	CONTACT HOURS:	
PREREQUISITES:	A grade of C- or higher in MATH 2610.	PREREQUISITES:	
Student must have earned an acceptable grade in all prerequisites before enrolling		Student must have earned an acceptable grade in all prerequisites before enrolling	
COREQUISITES:	None	COREQUISITES:	
Student must be enrolled in this course during the same term.		Student must be enrolled in this course during the same term.	
COURSE DESCRIPTORS:	General Education - Math/Quantitative Reasoning	COURSE DESCRIPTORS:	
For example: General Education course, Clinical, Lab, Studio, Distance Learning, Seminar, Practicum. Use designated codes: (once developed)		For example: General Education course, Clinical, Lab, Studio, Distance Learning, Seminar, Practicum. Use designated codes: (once developed)	
CATALOG COURSE DESCRIPTION:	A bridge between calculus and upper-level mathematics courses. Logic, sets, relations, functions, methods of proof. The course uses examples from calculus, elementary number theory, geometry, discrete mathematics, basic abstract algebra, and linear algebra. Emphasis is on concepts that will be encountered in later undergraduate courses. It is intended for Mathematics majors.	CATALOG COURSE DESCRIPTION:	A bridge between calculus and upper-level mathematics courses. Logic, sets, relations, functions, methods of proof. The course uses examples from calculus, elementary number theory, geometry, discrete mathematics, basic abstract algebra, and linear algebra. Emphasis is on concepts that will be encountered in later undergraduate courses. It is intended for Mathematics majors. This course is typically only offered during the Spring semester.

STUDENT LEARNING OUTCOMES:	Upon success completion of this course the student will: 1) State and apply logic and set operations, properties of number systems, and properties of functions and relations 2) Explore ideas within mathematical structures presented to form, investigate, and prove conjectures 3) Demonstrate the ability to write mathematical proofs 4) Communicate effectively and explain mathematics both verbally and in writing 5) Use acquired mathematical skills to undertake independent learning and to be a contributing member of a problem-solving team 6) Appreciate the beauty, joy and challenge in mathematics and experience mathematics as an engaging field with contemporary open questions	STUDENT LEARNING OUTCOMES:	Upon success completion of this course the student will:
TOPICS OUTLINE:	List Instructional units: 1) Logic (10% of time) i. Propositions and connectives ii. Conditionals and biconditionals iii. Quantifiers 2) Methods of Proof (35% of time) i. Proving universal statements A. Trivial proofs B. Vacuous proofs C. Direct proofs D. Proofs by contraposition E. Proofs by contradiction F. Proofs by cases ii. Disproving universal statements iii. Proving existential statements A. Constructive existential proofs B. Non-constructive existential proofs iv. Disproving existential statements v. Proving and disproving statements with both quantifiers	TOPICS OUTLINE:	List Instructional units:

	vi. Proofs using the principle of mathematical induction 3. Set Theory (10\%) i. Basic notations and operations ii. Set identities iii. Indexed families of sets iv. Power sets 4. Relations (20\%) i. Properties of relations (symmetry, antisymmetry, transitivity, reflexivity, etc.) ii. Equivalence relations iii. Ordering relations 5. Functions (20\%) i. Terminology (domain, codomain, range, image, preimage, etc.) ii. Restrictions, extensions, projections, compositions iii. Injectivity, surjectivity, bijectivity 6. Cardinality of Sets and the Continuum Hypothesis (5\% of time)		
ADDITIONAL INFORMATION (OPTIONAL): Note any special instructions, recommended texts, or materials (e.g., open-source materials)	None	ADDITIONAL INFORMATION (OPTIONAL): Note any special instructions, recommended texts, or materials (e.g., open-source materials)	

CLASSROOM REQUIREMENTS	Lecture	CLASSROOM REQUIREMENTS *Note: If modified classroom requirements result in increased demand for Budget, Facilities, Equipment, and/or Personnel, the campus CEO must approve this proposal.		
(e.g., Computer lab, Kitchen,				
Science Lab, Studio, Lecture)			\quad	(e.g., Computer lab, Kitchen, Science
:---				
Lab, Studio, Lecture)				

Resource needs have been discussed with Library Services and Information Technology Operations. (Complete if applicable.)

Name and Title	Signature of Originator	Date

GOVERNANCE BODY	SIGNATURES	DATE
Statewide Discipline Council		
School Area Curriculum Council		
Curriculum Congress		
School Area Academic Dean		
CT State Provost		
*Campus CEO (if applicable)		
*CT State President (if applicable)		

